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Normal mode sound propagation in an isovelocity ocean with random narrow-band surface
waves is considered, assuming the root-mean-square wave height to be small compared to the
acoustic wavelength. Nonresonant interaction among the normal modes is studied using a
straightforward perturbation technique. The more interesting case of resonant interaction is
investigated using the method of multiple scales to obtain a pair of stochastic coupled amplitude
equations which are solved using the Peano-Baker expansion technique. Equations for the
spatial evolution of the first and second moments of the mode amplitudes are also derived and
solved. It is shown that, irrespective of the initial conditions, the mean values of the mode
amplitudes tend to zero asymptotically with increasing range, the mean-square amplitudes tend
towards a state of equipartition of energy, and the total energy of the modes is conserved.

PACS numbers: 43.30.Bp, 43.30.Hw
INTRODUCTION

Acoustic propagation in an ocean with a randomly
rough surface has been the subject of several investigations
in the past. Kuperman and Ingenito' have used a boundary
perturbation method based on a small waveheight assump-
tion to determine normal mode attenuation coefficients due
to scattering from rough boundaries. McDaniel’> has de-
rived coupled power equations for calculating the energy
transfer between modes due to scattering from the rough
ocean floor modeled as a stationary Gaussian process. She
has also shown” that the coupled mode theory is equivalent
to the small wave height theory of Kuperman and Ingen-
ito. Bass ef al.** have used the Green’s function technique
to investigate the influence of boundary perturbation on
wave propagation. They have obtained a Dyson-type equa-
tion for the average Green’s function of a perturbed wave-
guide and determined the eigenfunctions, phase velocities,
average field, and second-order statistical moments of the
modes. Kryazhev ez al.® have also invoked the perturbation
theory to determine the first two moments of the sound
field in an Arctic type surface sound channel with an ir-
regular ice boundary. McDaniel and McCammon’ have
studied the effect of mode coupling due to lateral seabed
inhomogeneities on propagation loss and transverse hori-
zontal spatial coherence. Dozier and Tappert®® have de-
rived stochastic coupled amplitude equations and deter-
ministic coupled power equations for the randomly
coupled modes in an ocean with random sound-speed fluc-
tuations due to internal waves. They have shown that the
modal powers reach a unique equilibrium corresponding to
equipartition of energy, irrespective of the initial condition.
They have also obtained the statistical distribution of the
normal mode amplitudes in the equilibrium regime.
Boyles!® has presented a nonperturbative coupled-mode
theory of acoustic propagation in an inhomogeneous ocean
with randomly rough surface. Harper and Labianca!! have
proposed the much-used model of a random ocean surface

279 J. Acoust. Soc. Am. 94 (1), July 1993

0001-4966/93/94(1)/279/14/$6.00

as the sum of sinusoids with random phases, and studied
the problem of scattering from such a surface. Kohler and
Papanicolaou'? have provided a discussion of fluctuation
phenomena in underwater sound propagation dwelling pri-
marily on perturbation techniques applied to coupled am-
plitude equations. The works of Papanicolaou and
Keller,!? Papanicolaou,14 Kohler and Papanicolaou,ls'16
and Brissaud and Frisch!” provide much insight into the
problems of stochastic wave propagation in a waveguide.
The problem of normal mode sound propagation in an
isovelocity ocean with sinusoidal surface waves of small
amplitude has been investigated by the authors in an earlier
paper.'® In this paper, a more realistic model of the ocean
surface is considered by assuming that the surface eleva-
tion is a narrow-band Gaussian random process and that
the root-mean-square wave height of the surface waves is
small compared to the acoustic wavelength. The surface is
assumed to be static since the frequencies of surface waves
are usually very small compared to that of the acoustic
waves. The surface undulations are represented as a qua-
sisinusoidal function whose amplitude and phase are
slowly varying random functions of the spatial coordinate.
The surface is treated as a perturbation of a plane surface,
and the equivalent plane surface boundary conditions are
obtained using a Taylor series expansion. The resulting
boundary value problem is solved using, as in Ref. 18, the
multiple-scale perturbation technique, the perturbation pa-
rameter being the ratio of the root-mean-square elevation
of the surface wave to the acoustic wavelength. Since the
spatial power spectral density of the surface elevation has a
narrow bandwidth, the interaction between the surface and
acoustic waves becomes resonant if the center wave num-
ber of the surface satisfies appropriate phase-matching con-
ditions. Nonresonant interaction leads to small random
fluctuations in the amplitude and phase of the acoustic
wave. In the case of resonant interaction, two acoustic nor-
mal modes get stochastically coupled. The coupled-
amplitude equations contain coefficients which are random
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functions of the independent variable. These equations are
solved in series form using the Peano—Baker expansion
technique'® in a manner similar to the decomposition pro-
cedure of Adomian.”® This series is then converted into a
specialized exponential of a Gaussian random matrix by
the technique of ordering (symmetrizing)?' the coefficient
matrix of the system. After obtaining the solution from the
propagator matrix, the moments of the normal mode am-
plitudes can be expressed in terms of exponentials of the
double integrals of the autocorrelation functions of the ran-
dom coefficients appearing in the coupled amplitude equa-
tions. It is shown that the first and second moments of the
modal amplitudes vary slowly with range X and attain
spatial stationarity asymptotically as X — . The mean
amplitudes tend to zero while the mean-square amplitudes
tend to nonzero limits as X — oo . It is also observed that the
mean-square modal amplitudes satisfy a conservation law
which may be interpreted as the law of conservation of
acoustic power.

. FORMULATION OF THE PROBLEM

For the quasistatic surface condition under consider-
ation, the propagation of a plane monochromatic wave of
angular frequency o through an isovelocity ocean is gov-
erned by the Helmholtz equation

y Iy,
a_xf+5f+k =0, (1)
where e is the velocity potential, x is the horizontal

spatial coordinate in the direction of propagation, z is the
vertical spatial coordinate positive downwards, and

k=w/c=2n/A, 2)

where c is the speed of sound and A is the acoustic wave-
length. The ocean surface can be considered to be a static
corrugated surface since the surface wave frequency is usu-
ally very small compared to the acoustic frequency. The
elevation of the ocean surface from the mean plane z=0 is
a sample function of a zero-mean narrow-band Gaussian
random process N;(x) whose autocorrelation function is
assumed to be

| Ry, (u)=E[N,(x)N (x—u)]
=1 exp[ — (B?k*u*) /2] cos ku, 3)
B«l1, (4)

where k; is the center wave number (spatial frequency) of
the process N,(x), B is the fractional bandwidth, and

17 =E[Ni(x)] (5)

is the mean-square value of the surface elevation. We can
represent N,(x) in the form

Ni(x)=qVi(x)cos[kx+¢;(x)], (6)

where V,;(x) and ¢,(x) are slowly varying random func-
tions of x. It follows from Egs. (5) and (6) that

E[Vi(x)]1=0, E[Vi(x)]=2. (N
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We assume a horizontal bottom surface located at z=#.
The boundary conditions for ¢ may therefore be written as

¥(x,2) =0, at z=N,(x), (8)
IP(x,
——l/"(;Z) =0, at z=h. (9)

The boundary condition at z=N,;(x) can be trans-
formed into a condition at z=0 through a Taylor series
expansion. We have

Y(x,0)
¢[x,N1(x)]—¢(x,0)+N1(x) P
1 3*P(x,0)
2an
+5 Vi Ni(x) oz T (10)
The series on the right-hand side of Eq. (10) can be ap-
proximated by the first two terms provided that the root-

mean-square value of the third term is small compared to
that of the second, i.e., if

§

Since (3y/dz) =O0(ky), (62¢/822)=0(k2¢), E[N}(x)]
=17 and E[N}(x)]=37"% inequality (11) can be recast
in the form

oo 52 <o 4629

€<£1, (12)
where
e=nk=2mn/A (13)

is the surface roughness parameter. Condition (12) implies
that the rms value of the surface elevation should be small
compared to the acoustic wavelength. Assuming 7 to be
small enough to satisfy condition (12), the boundary con-
dition (8) may be replaced by the approximate boundary
condition

A(x,2)
¢(x,z)+nV.(x)( 'pa”

)cos[ksx+¢.(x)1=o,

at z=0. (14)

To facilitate the use of the perturbation technique we
introduce the dimensionless quantities

X=kx, Z=kz, H=kh, U=ku, K=kJk, (15)

and rewrite Eq. (1) and boundary conditions (14) and (9)
as

P
aX"i+ Z"i+¢ 0, (16)
P+eV(X) ¢cos[KX+¢(X)] =0, at Z=0, (17)
Y
ﬁ=0’ at Z=~H, (18)

where
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VixX)=Vi(x), ¢(X)=6¢(x). (19)

The dimensionless parameter € is the normalized rms
height of the surface wave. The functions V' (X) and ¢(X)
vary very slowly as compared to the trigonometric function
cos KX, the ratio of the two rates of variation being of
order B. In the new coordinate system, the surface eleva-
tion is given by

N(X)=€eV(X)cos[ KX+ ¢(X)]
=€[V (X)cos KX+ V (X)sin KX], (20)
and the autocorrelation function of N(X) is
Ry(U)=E[N(X)N(X—-U)]
=€* exp[ — (B*K*U?)/2]cos KU. (21)

Invoking the following properties of Gaussian random pro-
cesses:22

E[V(X)V (X-U)]=E[V,(X)V(X-U)],

(22)
E[V D V{X— V) ]=—EV(DVX-D)],
and combining with Egs. (20) and (21), we get
E[V(X)V(X-U)]=E[V(X)V(X—-U)]
=exp(—3B°K*U?), (23a)
E[V(X)V(X—U)]=E[V{(X)V (X-U)]=0. (23b)

We wish to investigate the interaction between the mth
normal mode acoustic wave of wave number k,, and. the
surface wave, where

km={1_[(m_%)(7T/H)]2}l/zr m=1’2,--"M’ (24)

M being the largest positive integer for which k,, is real. A
resonant interaction of order L (L=1, 2,...) occurs if

|k LK| =k,+68, 8=e€0, o=0(1), (25)

for some positive integers L and n, where 6 is the detuning
parameter. The cases of nonresonant and resonant interac-
tions are investigated separately in the following sections.

Il. NONRESONANT INTERACTION

In the case of nonresonant interaction, the boundary
value problem represented by Eqs. (16)-(18) can be
solved by a simple perturbation technique. On expanding
the function ¥(X,Z) in a perturbation series

Y(X,Z)=%(X,Z) +- ey, (X,Z) + -, (26)

substituting into Eqs. (16)—(18), and grouping together
terms with like powers of €, we obtain the following hier-
archy of boundary-value problems:

Order €
Py Py
W+'a—z—2+%=0, 27)
1P;=0, at Z=0, (28)
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9o

ﬁ=0’ at Z=H, (29)
Order €':

P

a_Xf+ﬁf+¢'l=0s : (30)

a
¢1=—V(X)£COS[KX+¢(X)], at Z=0, (31)

%—O at Z=H, (32)
aZ_ ’ - b
. etc.

For investigating the interaction between the acoustic
waves and the surface waves, we consider a single mode
solution of Eqgs. (27)-(29):

¥o(X,Z) =3A,, exp(ik,.X)sin a,,Z+c.c., (33)
o= (m—3)(a/H), m=1.2,.,M. (34)
Making use of Eq. (33) in Eq. (31), we obtain
= —130, A,V (X)cos[ KX +¢(X) |exp (ik,,X)
+c.c., at Z=0. (35)

Thus, the solution of Eq. (30), subject to the boundary
conditions (35) and (32), can be written as

(X, Z)=—ia,4,V(X){B\(Z)
Xexp i[ (K, +K)X+¢(X) ]+ By(Z)
xexp i[ (k,—K)X—¢(X)]}+c.c. (36)

The substitution of Eq. (36) into Egs. (30), (35), and
(32) yields

d*B; _
7 T68=0, j=12, (37)
B,=1 Z=0 4B, 0 Z=H, j=12, (38
j_ N at =0, dZ_ 'y at - ’ j_ sy ( )
where

fi=1—(k,+K)’=—7, (39a)

@=1—(k,—K)*=—"F. (39b)

In writing Egs. (37) we have ignored the terms containing
derivatives of V(X) and ¢(X) since V(X) and ¢(X) vary
very slowly as compared to cos KX. The solution of Egs.
(37) and (38) can be written as

cos q;(H—Z) coshr;(H—Z)
o ~ coshrH

. j=12. (40)

Thus, the expression for ¥/(X,Z) correct to the first order

in € becomes
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W(X,Z)=A,, sin(a,,Z)cos(k,,X) —3€a A,V (X)
X{B(Z)cos[ (k,+K)X+¢(X)]
+ By(Z)cos[ (k,,—K)X—¢(X)]}.  (41)

Equation (41) indicates that the first-order nonreso-
nant interaction results in the generation of two new acous-
tic modes with small and equal randomly varying ampli-
tudes %ea,,,AmV(X ). These modes are not normal modes.

Equation (41) can also be written in the form

W(X,Z) =a,,(X,Z)cos[ kX +€0,,(X,Z)], (42)

where

a,,(X,Z) =A,, sin a,,Z—iea,,A,,V(X)[ B{(Z) + By(Z)]
X cos[KX+¢(X)]+0(€). (43)

Equations (42) and (43) can be interpreted to mean that
the wavy surface induces small random fluctuations in the
amplitude of the acoustic wave. The root-mean square
value of these fluctuations is equal to jzea,d,[B;(Z)
+ B,(2)].

lIl. RESONANT INTERACTION

For investigating resonant interactions, which result in
the generation of new normal modes, we use a singular
perturbation technique, viz., the method of multiple
scales.”> We shall assume that either the small parameters
€ and B are of the same order of magnitude or S8 is the
smaller of the two parameters. The multiple scales are de-
fined as

X,=€"X, n=0,12,... (44)

For determining solutions correct to the first order in ¢, it
is sufficient to use two scales for X, viz., the short scale X,
characterizing the wavelengths of the propagating modes,
and the long scale (or slow scale) X, characterizing the
spatial modulations of the amplitudes and phases of the
modes. The derivatives with respect to X are transformed
to

a a3 o s
ax—ax, € ax,’ (43)
r_7 2 & €= & 46
X ax “ax,ox, € axt (46)

Accordingly, the asymptotic expansion of the solution is
now written as

VX, Z) =¥o(X0,X1,Z) + €1 (X0, X1,Z) + -+ . (47)

Equation (20) is also rewritten as
N(X)=¢€[V.(X|)cos KX+ V(X)sin KX,], (48)

since the cosine component ¥, and the sine component ¥
are slowly varying functions of X. Substituting Eqgs. (46)—
(48) into Egs. (16)—(18) and grouping together terms
with like powers of €, we get the following hierarchy of
boundary value problems:

0

QOrder <’-
Qrger €7
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32% Fho

ax2 tazZ T +to= (49)

=0, at Z=0, (50)

o

a—Z=O, at Z=H, (51)
Order €':

&y P Fo

ﬁg+ﬁ+¢l=_ X, 0X, (52)

P =—[V.(X;)cos KX,

) Ay
+ V(X,)sin KX;] 3z’ at Z=0, (53)

o
Z
We assume the following resonance condition:

=0, at Z=H. (54)

k,—K=k,+6, 6=e€o0, o0=0(1). (55)
Accordingly, we consider the following two-mode solution
of Egs. (49)-(51):

Vo(Xo,X1,Z) =34,,(X,)sin(a,,Z) exp (ik,,Xo)
+34,(X,)sin(a,Z)exp(ik,Xy) +c.c.,
(56)

where the functions 4,,(X,) and 4,(X;) are chosen so as
to satisfy Eqs. (52)—(54). On substituting Eq. (56) into
Egs. (52) and (53) and using Eq. (55), we get

52!/!1 & da,,
3X2 a—Zf +¢= de exp(zkao)sm(a Z)
dA,
"dX exp(tk,,Xo)s1n(a,,Z)+cc,
(57)
1 =—i{ad,(V.—iV,)exp i(k,Xo—0X;)
+amAm(Vc+iVs)exp i(an0+aXl)
+a,A,(V.—iV,)expli(k,,+K)Xo]
+a,d,(V.+iV)exp[i(k,—K)Xo]1}+c.c., at Z=0.
(58)

Hence, the solution of Eq. (57) must be of the form
¥, (Xo,X1,Z) =i{B,,(X,Z)exp(ik,X,)
+ B, (X,,Z)exp(ik,Xo)
+ Dy (X;,Z)expli(kp+K)Xo]
+ Dy (X, Z)expli(k,—K)Xo]} +c.c.
(59)
Substitution of Eq. (59) into Egs. (57), (58), and (54)

gives
o
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3B, dA,,

TZT—HI B,= de sin a,,Z, (60)

B, =1a,4,(iV.+V)exp(—ioX,), at Z=0, (61)

9B, 0 Z=H, 62
gz~ atL=H (62)

#B, |, d4,

ﬁf"‘a B,=—k,—5 ax, sin a,Z, (63)

Bn=%amAm(ch_ Vs)exp(iaxl)) at Z=Or (64)

9B, 0 Z=H, 65

aZ"‘ ] at - ’ ( )
D 2

3 Lt [1— (kn+K)2] D=0, (66)

D,=ia,A4,(iV.+V,), at Z=0, (67)

D,

2z =0 at Z=H, (68)

8D, )

W"‘[l_(kn_K) 1D,=0, (69)

D,=}a,4,(iV.—V,), at Z=0, (70)

9D,_,, Z=H 71

ﬁ— , at =i1. ( )

On multiplying Eq. (60) by sin ,,Z and Eq. (63) by
sin a,Z, integrating with respect to Z from 0 to H, and
using the boundary conditions (61), (62), (64), and (65),
we get

dAm Ay
_!X1 ZlmHA (P +iV )exp(—tchl), (72)

Equations (72) and (73) are a pair of coupled amplitude
equations whose solution determines the nature of varia-
tion of the amplitudes 4,, and 4,,. These equations can be
written in matrix form as

A'(X)=Q(X,)A(X,), (74)
where
A(X)) =[4,(X;) 4,(X)17, (75)
- —fmD(X}) 76
QXD=| ¢ e ix,) 0 , (76)
aman aman
fm 2ka fn=ﬁ’ (77)

D(X,) =exp[ —ioX||[V(X,) +iV.(X})], (78)

the prime denotes differentiation with respect to the argu-
ment, superscript T denotes matrix transpose, and * de-
notes the complex conjugate operator.

APIES LBt LDeldlld

283 J. Acoust. Soc. Am., Vol. 94, No. 1, July 1993

To solve Eq. (74), we employ the Peano—Baker expan-
sion'® to first obtain the fundamental matrix (propagator
matrix) P(X,) of Eq. (74). The propagator matrix satis-
fies the same differential equation as Eq. (74), i.e.,

P'(X))=Q(X)P(X)}), (79)
with the initial condition
P(0)=I, (80)

where I is the 2X2 identity matrix. The solution of Eq.
(74) can be expressed in terms of the propagator matrix
P(X 1) as

A(X,)=P(X)A(0). (81)
To determine P(X), we solve Eq. (79) iteratively by set-
ting

Py=1,

(82)
P/=Q(X)P,_;, j=12,...
Therefore, we obtain
X\
P1=I+J; Q(X,)dX,,
X, )
p,=1+fo Q(X,)P,(X,)dX,, (83)

etc.

In the limit, the propagator matrix is given by the follow-
ing infinite series

Xy
P(X))=I+ J; Q(X,)dX,
X X
+ [ ax, [ " ax outeer)

X X, X3 '
+j dxzjo dxsf dX, Q(X;)
0 0

XQ(X;3)Q(Xy) +---. (84)

The solution given by Eq. (84) is an infinite series of
n-fold iterated integrals (n=1,2,3,...). This solution satis-
fies Egs. (79) and (80), as can be seen by differentiating
Eq. (84) term by term assuming that the series is abso-
lutely and uniformly convergent with probability one. The
validity of this convergence assumption is proved in Ap-
pendix A.

IV.. DETERMINATION OF CLOSED FORM
EXPRESSIONS FOR MODAL AMPLITUDES

The series solution given by Eq. (84) cannot be di-
rectly used for determining the statistical moments of the
modal amplitudes 4,,(X) and 4,(X;). Hence, we shall try
to obtain a closed-form expression for the propagator ma-
trix P(X,). We note that the right-hand side of Eq. (84)

contains matrix nroducts which are not commutative, a.o

COLANNS INAIIX PIOGUCLLS WillCa are ol commuiative, &. T3
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Q(X;)Q(X;3)#Q(X3)Q(X2), for Xp7£X;.  (85)

Taking the third term in the series on the right-hand side of
Eq. (84), we have

X) X,
L dxzfo dX; Q(X)Q(X3)

1

— f dx, I dX; Q(X,)Q(X3)

1 rx, Xy
2 J, dX; J;{ dX, Q(X;)Q(X3). (86)
3

However, we have

Xy X -
j dx3f dX, Q(X,)Q(X;)
0 X3

Xy X,
=J dXzf dX; Q(X3)Q(X>). (87)

0 X,
by a simple interchange of the dummy variables X, and X;.
Therefore, we obtain from Egs. (86) and (87) the foliow-

ing formula:

I'(X;,X3,X4)

X, X,
L dXzI X, Q(X,)Q(X3)

1
= [ax [ anleu QU 1)
+QUQUEX (X3 X ], (88)

where y(X,,X3,....X,, 1) is the generalized unit step func-
tion defined as

1, if X,>X5>
X (X2.X35: X0 1) =0 otherwise.

The somewhat tortuous procedure leading to Eq. (88) is
necessary because the matrix product is not commutative.
Using the general definition cited in Eq. (89), we obtain
the following equation in an analogous fashion:

”>Xn+1’ (89)

X X, X,
L dxzjo dxsjo dX, Q(X,)Q(X3)Q(Xs)

1 % X Xy
3 Jo Jo J0

where

dX,T'(X,,X3,X4), (90)

=Q(X2)Q(X3)Q(X4))((X2,X3,X4) +Q(Xz)Q(X4)Q(Xs)X(Xz,X4,X3)
+Q(X3)Q(X4) Q(X3)x (X3,X4,X,) +Q(X3)Q(X3) Q(X4) x (X3,X3,X4)

+Q(X4)Q(X)Q(X3)x (X4,X3,X3) + Q(X4)Q(X3) Q(X;) x (X4,X3,X2). (91)

Expressions similar to those on the right-hand sides of Eqgs.
(88) and (90) can be derived for each and every term of
the series on the right-hand side of Eq. (84). Furthermore,
Eqgs. (88) and (90) can be rewritten, in a compact form, as
given below:

X, X5
L dx, L dX; Q(X)Q(X;)

1 X Xy
=S[EL dXZJ:) dX3Q(X2)Q(X3)” (92)

and

X, - (X X3
fo dxzfo dxsfo dX, QUX2)Q(X5)Q(X,)

11 X X X
=S|= dXx, dX, dX, Q(X,)
3! 0 0 0

X Q(X3)Q(X,) ] (93)
where the symbol S{- - -} denotes the operation of symme-
trizing the iterated integrals. Thus, the symbol S{---}
serves to make Q(-) commute for different arguments.
Consequently, the iterated integrals can be written, term by

mmran e nml ate o at ana comnant Hinally thae

2 +h roaseury
l.cl 111, as CAPILIOUdSIVIL l-llal. aiv vely Jvullipavi. 1iliail _y’ s LUV
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series given by the right hand side of Eq. (84) can be recast
as

<1 rx X
P(X;,)=S 2 3 I dXz"'j dX;y
i=0 © Jo 0

(94)

XQ(X3) - Q(X;11) |-

Equation (94) can be expressed as a specialized exponen-
tial of a matrix, as given below:

X
P(X,)=S|exp L 1 Q(Xz)dle. (95)

In Eq. (95), if the exponential is first expanded in a series,
and the S operator is then applied term by term, what is
obtained is just the expression on the right-hand side of Eq.
(84).
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The solution of the coupled amplitude equations [Eq.
(74)] can be formally written by substituting Eq. (95) into
Eq. (81). The method of obtaining the first and second
moments of the modal amplitudes 4,,(X;) and 4,(X,) is
presented in the following sections.

V. DETERMINATION OF THE MEAN

To obtain the means of the mode amplitudes A4,,(X,)
and A4,(X,), we employ the following result obtained in
Appendix B:

X
s eprO 'Q(Xz)dXZ)H

U (M ax, [ ax, E[ox)Qx
3 |4t [ " axs Eloca 3)1]](,96)

where E is the expectation operator. Combining Eqgs. (95)
and (96) we obtain

E

=S|exp

l X X _fmfnh(X
E[P(X,)]=S EL'dsz’dxs[ 0 2

exp

The double integral in Eq. (101) can be reduced to a single
integral by using the identity

X, X,
I dXZI dXs h(Xy—X;)
0 0

X .
=I ' X— |u])h(w)du (102)
-X

On substituting for 2(u) from Eq. (99) we find that the
imaginary part of the integral in Eq. (102) vanishes, and
thus we get

—X3)

E[P(X,)]=S

1 X X
2 ),
X)
XL dX; E[Q(Xz)Q(Xs)]”- (97)
From Egs. (76), (78), and (23), we get

exp

E[Q(X;)Q(X;)]
[—fmfnh(Xz—Xs)
0 _fmfnh*(XZ_X3)]
where
h(X,—X3) =2 exp[ —io(X,—X3) — (X,—X3)2/29%]
(99)

and

y=e/BK (100)

is the correlation radius of the surface elevation in the slow
scale X;.
On substituting Eq. (98) into Eq. (97), we get

— fmf H* (X —X3) l } ’ ‘ (on
|
A(u)==2ffn(X1—u;)cos(ou;)
Xexp(—u/2P)1, i=1.2,... (105)

and I is the 2 X2 identity matrix. The matrices A(%;) are
diagonal matrices and hence their products are commuta-
tive, i.e.,

A(u)A(u))=A(u;)A(y;), for all u; and u;. (106)

Hence, we have

Xy Xy X X,
f dXzf dX; h(X,—X3) S du, - f du; A(ug)---A(u;)
0 0 0 0
X, —u?
=4L (Xl—u)cos(au)exp(z—yz—)du. (103) _ dul J. du; A(uy) - A(u;), (107)
We can therefore rewrite Eq. (101) as and Eq. (104a) can therefore be written as
X
E[P(X;)]=S]exp J " A(u)du (104a) 1,
0 E[P(Xl)]=exp( j A_(u)du)
X, 0
=S Z() 1 0 dul-.- =exp[_2fmfng(X1)]I’ (108)
X where
X I duiA(uI)-"A(u,-)’, (104b)
0 X
_ _ 2
where g(X))= J;) (X, —u)cos(ou)exp(—u/2y*)du. (109)
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Using Eqgs. (81) and (108), and assuming that the ocean

surface perturbations are independent of the initial condi-

tions 4,,(0) and A4,(0), we obtain
E[A(X))]=E[P(X,)]E[A(0)]

=exp{—2ff8(X1)}E[A(0)].  (110)

VI. DETERMINATION OF THE SECOND MOMENTS

We are interested in computing the following second
moments:

E[An(X)A45(X1)], E[An(X))AF(XD)],

E[A4,(X))A%(X,)], and E[A4,(X))A¥(X))].
From Egs. (72) and (73), we obtain

0 —fmD*(X1) —fmD(X))
an(Xl) 0 0
%(X)= S2D*(X,) 0 0
0 f.D*(Xy) SxD(Xy)

Since Eq. (112) has the same form as Eq. (74), the solu-
tion of Eq. (112) can be written as

C(X,) =P,(X,)C(0), (115)

where P,(X,) is the propagator matrix given by

P,(X))=S

X
expj0 ! Qz(Xz)dXz’- (116)

Following a procedure analogous to that used to de-
rive Eq. (104a), we can obtain the following expression for

ETP,(X))]:

E[P,(X))]=S , (117)

exp( J:Yl Az(u)du)

where
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[4n (X)) AR (X )]
=Ap (X)) [A47,(X)) [*+4,,(X )47 (X))
= —fmD*(X))Apn(X1)47(X})
— fmD(X )4, (X)) A5 (X)) (111)

Expressions for [4,,(X)4¥(X )], [4,(X)4%(X})]’, and
[4,(X1)A¥ (X))’ can be derived in a similar fashion. This
entire set of four equations can be combined into a single
matrix equation, viz.,

C'(X1)=Q,(X,)C(X)), (112)

where

C(X)) =[An(X A (X}), An(X))AF(X)),

AXDARX), A,XDAAXDT,  (113)
and
0
— fmD(X))
—faD*X) [ (114)
0

Ay(u) = —2f o f (X1 —u)cos ou exp(—u>/27%)
1 0 0 —fu/fn

0 10 0 s
o 01 o (118)
—f/fm 0 O 1

It can be easily verified that the matrix product
Ay(u)Ay(u;) is commutative for us~u;. Hence, Eq.
(117) can be replaced by

X
E[Py(X))] =exp( L 'Az(u)du). (119)

Using the expansion

2M3

exp(M)=I+M+—r+—r+, (120)

Eq. (119) can be reduced to
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Hexp[2g(X,)1+1} 0 0 — (fm/2f ) {exp[29(X,) ] 1}
0 exp[g(X;)] 0 0
E[Py(X,)]= 0 0 exp[g(X))] 0 ,
— (fn/2f m){exp[29(X|)] -1} 0 0 Hexp[2g(X{)]+1}
) (121)
I
Where g(Xl ;037) = (W/Z)I/ZYXICI'f(Xl/ \/i}/) _,yl
q(X))=—=2f,.f8(X}). (122) X[l—exp(—X%/2‘yz)], (128)
Assuming once again that the initial conditions are ...
statistically independent of the surface perturbations, we
can write from Eq. (115) erf(v)=(2/\/1_r)j exp(—u?)du (129)
0

E[C(X))]1=E[P,(X,)]E[C(0)]. (123)

Combining Egs. (113), (121), and (123), we can
therefore write

EL| dn(X1)|?]
=H{1+exp[ —4f,f8(X1) 1}E[ | 4,,(0)|*]
+3(f/ fu){1—expl —4fnfr8(X)]1}

X E[|4,(0) %], (124)
E[A,(X)A47(X1)]
=exp[ —2f ./ 8(X1)1E[4,,(0)4}(0)]. (125)

Expression for E[|4,(X,)|’] can be obtained by inter-
changing m and » in Eq. (124).
We have by definition [see Eq. (77)]

fm/fn=kn/kM' (126)

Substituting Eq. (126) into Eq. (124), we find that the
second moments of the normal mode amplitudes satisfy the
conservation law

kmEl | Am(X1) |21+ K,E[ | 4,(X)) ]

=knE[|A4(0)|?] +k,E[|4,(0) |*]. (127)

The quantity k,,E[|4,,(X;) |] is proportional to the power
in the mth mode, and hence Eq. (127) represents the law
of conservation of power.

VIi. RESULTS AND DISCUSSION

The evolution of the first and second moments of the
modal amplitudes under conditions of resonant coupling is
governed by Eqs. (110), (124), and (125). Since the evo-
lution of the moments is determined primarily by the be-
havior of the function g(X;) defined by Eq. (109), it is
instructive to study the properties of this function in some
detail. We shall henceforth denote this function by
g(X,;0,7) to make its dependence on the parameters ¢ and
v explicit. It can be readily shown that
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is the error function. The right-hand side of Eq. (128) is a
monotonically increasing function of | X;| for |X;|>v2y.
It can also be shown that, when =40,

g(X1;0,y) =0"2G(aX;;07), 050, (130)
where
y —u?
G(y;a)= f (y—u)cos u exp(?.?—)du. (131)
0

It is evident from Eq. (130) that the nature of variation of
g(X,;0,7) depends on the product oy and the parameter o
acts only as a coordinate stretching factor. Hence, defining

y=oX), a=ay, (132)

the behavior of the two-parameter family of curves
g(X,;0,7) can be deduced from that of the one-parameter
family G(y;a). ,

It can be easily seen from Eq. (131) that G(y;a) is an
even function of both y and a. Variation of G(y;a) with y
is shown in Fig. 1 for different values of the parameter a.
For the limiting values of =0 and |a/y| - , we can
derive the results

G(»;0)=0, for all y, (133)

lim G(ya)=2sin® (3 ). (134)
Evidlea:t’:y, m;ve have

G(y;a) =0, at y=0, for all a. (135)

The asymptotic behavior of G(y;a) for large |y| is given
by

G(y;a) ~ (7/2)2 exp(—3a?) |ay|,

as y— o, |a/y|<co. (136)

In accordance with Eq. (135), each curve in Fig. 1 tends to
become a straight line with slope (7/2)'?|a|exp(—ia?),
as y— o. This limiting slope has the maximum value of
(7/2e)'? when |a| =1. Hence, the growth of G(y;a) is
the fastest when |a|=1. For |a|>5, the value of
this limiting slope is so small that G(y;a) appears to re-
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FIG. 1. Plot of the function G(y;a) for different values of a.

main almost constant beyond a certain value of y. The
growth of G(y;a) is monotonic if |a| < (27)"%. When
|@| > (27) /2, the initial portion of the curve G(y;a) looks
like a damped sinusoid oscillating with period 27 and unit
initial amplitude. The oscillations occur about a mean
value which keeps increasing slowly starting from an initial
value of unity. Eventually, the oscillations die out and
G(y;a) keeps growing monotonically. The decay of the
oscillations becomes progressively slower with increasing
|a|, and as |a|— «, G(y;a) approaches the undamped
sinusoid defined by Eq. (134).

Using Eqs. (130) and (126), expressions for E[4,,],
E[|A4,,|%], and E[A4,,4*] given by Egs. (110), (124), and
(125) can be rewritten as

E[An(X)]=exp] —2/,nf,07 G(8X;0) 1E[4,(0)],

(137)
E[|4,(X)|*]
=314+{E[4,,(X)]/E[4,,(0)]})E[ |4,,(0) |*]
+ (f/2f )1 —{E[4,,(X)1/E[4,,(0) ]}
X E[|4,(0)|?], (138)

E[A4,(X)45(X)]

={E[A,(X)]/E[4,(0)]}E[4,,(0)4F(0)],  (139)

where X =kx is the normalized distance and 6=eo is the
detuning parameter. Since G(8X;a) - » as X — 0, it fol-
lows from Eqgs. (137)-(139) that the mean amplitudes
E[A,,] and the correlations E[A,,4¥] decay to zero and the
mean square amplitude E[|4,,|?] approaches the limiting
value 3| 4,,(0) |21+ (f/2f,) ET| 4,(0) |]} 25 X co.
The progressive decay of E[4,,] while E[|4,,|?] remains
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nonzero signifies that 4,, tends to become more random
with increasing X. The mean-square amplitudes
E[|A,,(X)|?] at large X may be either larger or smaller
than the corresponding initial values. The conservation law
given by Eq. (127) is satisfied for all X.

Numerical results for the variation of the mean and
mean-square values of the modal amplitudes have been
computed for an isovelocity ocean with rigid bottom with
the following parameters: sound speed ¢=1500 m s~
mean ocean depth 7=30 m, frequency f=50 Hz, acoustic
wavelength A=30m, k=27f/c=(%/15) m~ . At this fre-
quency only two normal modes exist with k; = \/E/4 and
ky = \/'_1/4. It is assumed that the initial mode amplitudes
are A,(0)=1, A,(0)=0. It follows from Eqgs. (137) and
(138) that E[4,]=0 for all X, and that E[4,]-0,
E[|4,|1-1 and E[|4,|%]>3(k,/k,;) as X - . The decay
of E[4,] and E[| 4, |?] from their initial values of unity, and
the growth of E[| 4,|*] from its initial value of zero may be
either monotonic or oscillatory, depending on the value of
a. The evolution of these averages is controlled by three
parameters, viz., a, 8, and o. These parameters are, in turn,
related to the surface wave parameters 77 (root-mean-
square wave height), A, (wavelength) and S (fractional
bandwidth) as follows:

a=(A/B)(A5'—A71), (140)

s=A(AR'=27h), (141)

o=A/2m) (A =471, (142)
where

Ap=Aki—k;) ! (143)

is the resonance wavelength. When A,=A4,,, the detuning
parameter §=0 and coupling between the modes is the
strongest. The variation of the moments with X is shown in
Figs. 2 and 3 for n=0.6501 m, A,=100 m, and different
values of B, viz.,, =0.2269, 0.02269, 0.002269, and
0.0002269. The corresponding values of o, §, and a are
0=0.05, §=0.006808, and a=0.1, 1, 10, and 100. The
decay of E[A,] and E[|4,|%] and the growth of E[|4,|?]
are monotonic if |a| < (27) 72 je., if B exceeds a critical
value f3, given by

Be=(2m) " (A'A—1). (144)

The monotonic decay/growth are fastest for a=1, i.e., for
B=(2m)?B,. If B<p., the initial variation is oscillatory
in nature. The oscillatory variation persists for longer and
longer distances as B becomes smaller and smaller. In the
limit, as B—0, the variation approaches the periodic behav-
ior characteristic of a sinusoidal surface.'®

If the root-mean-square wave height 7 is varied keep-
ing A, and B fixed, we find from Egs. (140)-(142) that o
varies in inverse proportion to 7 while @, § remain un-
changed. Referring to Eq. (137), it follows that the rate of
change of E[A4;] with X becomes faster as 7 is increased.
This effect is demonstrated by the curves in Figs. 4 and 5
which show the variation of E[4,] with X for 1,=100 m,
B=0.02269, 0.002269, and 7=0.1, 0.3, and ! m. These
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FIG. 2. Variation of E[4,] with X for 7=0.6501 m, A,=100 m, and
different values of B.

values correspond to 6=0.006808, a=1, 10, and
0=0.3251, 0.1084, and 0.03251, respectively. Using Eq.
(138) in conjunction with Figs. 4 and 5, the variation of
E[|4,|%] and E[|4,|*] with X can be readily deduced. It
may be noted that the rate of change of the second mo-
ments also becomes faster as 7 is increased.

The effect of variation of surface wavelength A, keep-
ing 7 and B fixed is shown in Fig. 6. When A,;=A,,, there
is perfect resonance and the parameters a, 8, and o are all
equal to zero. As |A,—Ay,| is increased, the magnitudes of
a, 8, and o increase monotonically. For the chosen values
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FIG. 3. Variation of E[|4,|%] and E[|4,|*] with X for 7=0.6501 m,
A,=100 m, and different values of B: E|4,|Y, - E| 4,2
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ferent values of 7.

FIG, 4, Variation of E‘[Al} with

of A, k,, and k,, we have 1,,=97.7810 m. The curves in
Fig. 6 show the variation of E[4,] with X for »=0.5 m,
B=0.02269 and A,=100, 102, 105, and 110 m. The corre-
sponding values of a, §, and ¢ are as follows: a=1.0000,
1.9016, 3.2538, and 5.5074, §=0.006808, 0.01269,
0.02109, and 0.03408, and o=0.05000, 0.09320, 0.1549,
and 0.2503. When A, is close to 1,,, the mean and mean-
square amplitudes vary rapidly and monotonically. As A
moves away from resonance, the variation becomes slower
and also acquires an oscillatory character. Qualitatively
similar results are obtained for 1,<4,,.

VIIl. CONCLUSIONS

In this paper, the propagation of plane normal mode
acoustic waves in an isovelocity ocean with narrow-band

N=0Im
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-
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w
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0 1500 3000 4500 6000 7500
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FIG. 5. Variation of E[4;] with X for A;,=100 m, 8=0.002269, and
different values of 7.
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random Gaussian surface undulations has been investi-
gated using a perturbation technique under the assumption
that the root-mean-square wave height of the surface waves
is small compared to the acoustic wavelength. If a normal
mode is not resonantly coupled to any other mode, the
amplitude of the uncoupled mode suffers small random
fluctuations as it propagates in the perturbed channel. In
this case, the moments of the modal amplitudes do not
vary with propagation distance; the mean amplitude is
equal to the amplitude in the unperturbed channel while
the standard deviation of the amplitude is of order €. But if
two modes are resonantly coupled, the amplitudes of the
coupled modes may suffer large random fluctuations.
Moreover, in this case, the first and second moments of the
modal amplitudes vary with propagation distance X. This
variation has several interesting features. The mode ampli-
tudes approach wide-sense stationarity asymptotically; spe-
cifically, the mean amplitudes decay and tend to zero as
X - « while the mean-square amplitudes approach non-
zero limiting values. If the fractional bandwidth S is suffi-
ciently large, the moments of the modal amplitudes ap-
proach their limiting values monotonically. But if 3 is less
than a critical value B, the initial variation of the moments
is oscillatory. This oscillatory variation is sustained over
larger and larger distances as f is reduced, and as §—0, the
variation approaches the periodic behavior characteristic
of a channel with a sinusoidal surface.! The rate of change
of the moments with X increases as the root-mean-square
wave height 7 is increased. The rate of change of the mo-
ments is large if the surface wavelength A, is close to the
resonance wavelength, and reduces rapidly as A, moves
away from resonance. The mean square amplitudes of the

tions at the ocean bottom as a matter of convenience. But
a similar analysis, with trivial modifications, can be used
for other bottom boundary conditions as well.

A more interesting problem would be the one involv-
ing resonant coupling among three or more modes in a
multimode channel. In principle, this is a straight forward
generalization of the present problem, but the algebraic
difficulties may increase rapidly with increase in the system
order.

In general, the method developed in this paper is a
novel scheme for analytically deriving the moment equa-
tions from a linear system of stochastic differential equa-
tions with parametric excitation. This method is suitable
for solving a class of stochastic boundary value problems
with random medium/boundary perturbations.
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APPENDIX A: CONVERGENCE OF THE SERIES IN EQ.
(84)

We define the modulus of a matrix A as the matrix
whose elements are the moduli of the corresponding ele-
ments of A, ie.,

|[Aul |4l

mod A=| : : (A1)
[Amt| 0 Al

Given two real m X n matrices A and B, we say that A<B

if 4,;<B;; for all i and j. Applying these definitions to the
matrix Q(X;), we can write

mod Q(X,)<HT(X;), for all X, (A2)
where T(X),) is the largest element of mod Q(X)), i.e.,
T(X1)=méx[|Qij(X1)|], (A3)

i’!
and H is the 2 X2 matrix with all elements equal to unity,
ie.,

11
w1 as
It can be easily seen that
H’=2H. (AS5)

Combining Eq. (A2) with the first member of Egs. (83),
we get

X
mod P1=mod[I+ j ' Q(s)ds
0

. . . . . . X
interacting modes satisfy a conservation law which is <I+ _[ [mod Q(s)]ds<I+HU(X,), (A6)
equivalent to the law of conservation of acoustic power. 0
In this paper we have assumed rigid boundary condi-  where
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X)
UXx))= J.O T (s)ds. (A7)

For all X,>0, the function U(X,) is a non-negative real
function that increases monotonically from U(0)=0.
Next, we prove the following:
Lemma: The inequality

n 2! lUl(X)
mod P,(X;)<I+H Z (A8)

is true for all integers n>r if it is true for n=r.
Proof: Considering the rth member of Egs. (83) in
conjunction with Eq. (A2) we can write

X,
mod P,+I(X1) =m0d(l+ J- 1 Q(S)P,.(S)dS)
0

X,
<I+ jo [mod Q(s)][mod P,(s) ]ds

r 21 IUI(S))
ds

X
<1+I IHT(s)(I+H
0

(A9)
if inequality (A8) is true for n=r. On integrating the prod-
uct U'(s)T(s) by parts and invoking Eq. (A7), we get
Ui+1 ( Xl )

i+1
On substituting Eq. (A10) into Eq. (A9) and invoking
Egs. (AS) and (A7), we get

X
j " Ui(s) T (s)ds= (A10)
0

ip rrerantl v ZM)
mod P, (X)<I+ ( ( 1)+,=1 (+1)

r+1 21 lUl(Xl)

=I HZ

It follows by induction that inequality (A8) is true for all
integers n>r if is true for n=r.

But inequality (A6) indicates that (A8) is true for
n=1. Hence inequality (A8) is true for all positive integers
n. In the limit, as »n— 0, inequality (A8) yields

lim modP,(X;)<I+5H(2V¥V —1).

n— o

Inequality (A12) implies that the sequence P,(X,),
which is the sequence of partial sums of the series in Eq.
(84), is absolutely bounded with probability 1. Hence, the
series in Eq. (84) is absolutely and uniformly convergent
with probability 1.

(A11)

(A12)

APPENDIX B: PROOF OF EQ. (96)

The characteristic functional of a random process
Y (x) is defined as

G([kD=E (B1)

exp(i J.m k(x) Y(x)dx) s

where k(x) is an arbitrary auxiliary test function. The
notation G([k]) emphasizes the fact that G depends on the
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whole function k, not just on the value it takes at any
particular point x. The characteristic functional can also be
expressed as?*

-] n

l
log G(IKD= 3 (ﬁ f_m f k(e k(x,)

XC[Y(x1),..., ¥ (x,) ]dx;"- 'dxn)

or
G([k])=exp

PIEE

xC[Y(xl),...,Y(x,,)]dxl---dx,,) R

. f_” kCx) k()

(B2)

where C[Y(x,),...,Y(x,)] are the cumulants of the joint

distribution of Y (x,),...,Y(x,) for n=1, 2,... . Choosing
—i, 0<x<X,,
k(x) = [0, elsewhere, (B3)

and equating the right-hand sides of Egs. (B1) and (B2),
we get

exp( LXI Y(x)dx)l
PICHN

del---dx,,) .

E

=exp

X
. fo CLY(x)),.., ¥ (x,)]

(B4)

For a Gaussian random process with mean 0, we have

ClY(x1),Y(x)]1=E[Y(x1) Y(x,) ],
(B5)

ClY(x),....,Y(x,)]=0, for n=1 or n>2.

Hence, for a Gaussian random process with mean 0, we
have

exp( J:Yl Y(x)dx) ]

1 rx, X,
=exp(— J;) dXZJ; dX3E[Y(X2)Y(X3)]). (B6)

E

2

If Q(x) is a square matrix of jointly Gaussian random
processes with mean 0, we can write the following result by
analogy with Eq. (B6);

S exp( J;Xl Q(Xz)dxz)H

1 rx) 2¢)
EL dxzjo anE[Q(Xz)Q(Xa)]H,

E

=S|exp

where S is the symmetrizing operator introduced in Sec.
Iv.
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